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We study steady states of the motion of a large number of particles in a closed box that are excited by a
vibrating boundary and experience a linear drag force from the interstitial fluid. The dissipation in such systems
arises from two main sources: Inelasticity in particle collisions and the effects of interstitial fluid on the
particles. In many applications, order of magnitude estimates suggest that the dissipation due to interstitial fluid
effects may greatly exceed that due to inelasticity and one is naturally led to neglect inelastic effects. In this
study, we show that, if one adopts a linear drag force and inelastic effects are neglected, a steady state only
exists when the vibration speed of the boundary is below a critical value. For vibration speeds above this
critical value, no steady state exists since the kinetic energy of the particles grows without bound. We show
that, for vibration speeds above the critical value, inelastic effects must be included to obtain a steady state
even if order of magnitude estimates suggest they are negligible. Numerical simulations confirm these theo-
retical predictions. We also show that inclusion of apparently small nonlinear drag terms can also play a similar
role in preventing the kinetic energy of the particles growing without bound.
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I. INTRODUCTION

Many industrial applications require large numbers of dis-
crete solid particles to be transported and processed. In gen-
eral, these particles are surrounded by a fluid. These systems
are subject to two main sources of energy dissipation: Inelas-
ticity in particle collisions, and the effects of the interstitial
fluid. For dense flows made up of large particles suspended
in a gas �such as rock avalanches�, the dissipation due to the
interstitial fluid will be negligible and dissipation will be
dominated by the effects of inelasticity. However, in many
cases, such as fluidized beds, sediment transport and slurry
flows, the interstitial fluid can play a crucial role in determin-
ing the dissipation.

In the absence of any external energy sources, the highly
dissipative nature of these systems mean that the particles
rapidly come to rest. However, if sufficiently large amounts
of energy are supplied, the particles can become highly agi-
tated and the material can adopt a state that is similar to a
kinetic gas. In a wide range of applications the particles ob-
tain the energy to achieve this agitated state via interactions
with boundaries. In many industrial processes this occurs
through mechanical forcing in which vibrating boundaries
impart kinetic energy to the particles in its vicinity. Such
forcing has been studied in a variety of contexts by a number
of authors �1–9�.

For vibrated systems, the case in which the dissipation is
dominated by inelastic effects has been widely studied. How-
ever, the case in which the dissipation due to the interstitial
fluid is important has received much less attention. This is
perhaps surprising since there are a wide range of important
physical processes in which the overall dissipation is domi-
nated by drag from the interstitial fluid �10�. Kumaran �4�
considered a system of particles in an open box with a vi-
brated base and included the effects of gravity. Among a
number of important results, he showed that steady states

could always be determined when the dissipation is domi-
nated by interstitial fluid effects and the dissipation due to
inelastic collisions are neglected. Various authors �11–14�
considered a binary mixture of spheres of different density
and equal radius that are vibrated and experience a drag force
from the interstitial fluid and showed that surprising segre-
gation effects can occur.

In this paper, we will consider a system of particles in a
closed box with energy added to the system by a vibrating
boundary. In many applications, order of magnitude esti-
mates suggest that the dissipation due to interstitial fluid ef-
fects may greatly exceed that due to inelasticity. Therefore,
one may be led to neglect inelastic effects. We will therefore
determine the conditions under which dissipation due to a
linear drag force from the interstitial fluid can balance the
energy input from the boundary forcing and hence maintain a
steady state. We will use equations based on kinetic theory to
perform a theoretical analysis of such systems. Surprisingly,
when inelastic effects are neglected, we will show that a
steady state can only exist if the vibration speed of the
boundary is below a critical value. For vibration speeds
above this critical value, the kinetic energy of the particles
grows without bound. However, if inelastic effects are in-
cluded, we show that a steady state can be achieved even for
vibration speeds above the critical value. Therefore, above
the critical vibration speed, inelastic effects must be included
even though order of magnitude estimates suggest they are
negligible. We provide analytical expressions for the critical
vibration speed. For elastic systems we also determine the
asymptotic behavior of the system for vibration speeds near
the critical value. We also determine the asymptotic behavior
for large vibration speeds when inelastic effects are included.
We conduct three-dimensional numerical simulation for both
elastic- and inelastic-particle systems and show that the re-
sults from numerical simulation give good qualitative agree-
ment with our theoretical predictions. We also show that the
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inclusion of nonlinear drag terms, even though they appear
to be small can also prevent the kinetic energy of the par-
ticles to grow without bound.

The rest of the paper will be organized as follows: In Sec.
II, we present the theoretical formulation for the equations
which govern the steady state. In Sec. III, we use a simple
model for the energy input from the vibrating boundary and
derive the solution for the steady state when inelastic effects
are neglected. We show that the pressure tends to infinity as
the vibration speed tends to a critical value from below. In
Sec. IV, we show that if the inelasticity in particle collisions
is included in the theoretical analysis, then a steady state will
always exist even if the vibration speed exceeds the critical
value. In Sec. V, we present the result of numerical simula-
tions which confirm the theoretical predictions presented in
Sec. III. In Sec. VI we consider the effects of nonlinear drag.
In Sec. VII we present a summary of our findings. In Appen-
dix A we give details of some of the constitutive models
used to demonstrate the phenomena described in this paper.
In Appendix B, we show that the same phenomena occurs
when we take a more detailed approach to modeling the en-
ergy input from the vibrating boundary �2�.

II. THEORETICAL FORMULATION

We consider a system that contains a large number of
identical smooth spherical particles with radius a and density
�. The particles are confined between two parallel smooth
and rigid boundaries. One of the boundaries vibrates in the
direction perpendicular to its own plane, while the other
boundary is fixed. The mean separation between the two
boundaries is L. We denote the mean fraction of the volume
occupied by the particles as �̄. The masses of both of the
walls are considered to be sufficiently larger than the masses
of the particles that collisions between particles and bound-
aries have a negligible effect on the motion of the bound-
aries. For simplicity, we adopt a “saw-tooth” motion for the
vibrating boundary �8,15�, in which the wall moves with a
constant speed w over a distance d before executing an in-
stantaneous jump back to its starting position. We further
assume that d�L, and so, to the leading order, all collisions
with the vibrating boundary occur at the same location. This
assumption avoids the presence of heat pulses that propagate
away from the wall �8� and allows the possibility of genuine
steady states. Figure 1 shows the basic setting of this system.

When two particles collide or when a particle collides
with the wall, the velocities are updated using the standard
collision rules with a constant coefficient of restitution e.
Between particle collisions the particles simply obey New-
ton’s second law and experience drag due to the interstitial
fluid. We will assume that the drag Fd, experienced by the
particles, can be approximated by a Stokes drag law

Fd = − 6��au ,

where � is the viscosity of the fluid and u is the velocity of
the individual particles. If the local volume fraction of par-
ticles is large, this force can be enhanced by the presence of
neighboring particles. This effect has been studied by San-
gani et al. �16� who showed that the dissipation arising from

viscous drag must be multiplied by a function of the local
volume fraction. For simplicity we neglect this effect, al-
though the inclusion of this effect does not qualitatively ef-
fect the results that we present here. The use of the Stokes
drag law requires that the inertia as measured by the Rey-
nolds number based on the particle radius is small. Order of
magnitude estimates suggest that this requires that

Re =
� faw

�
� 1,

where � f is the density of the interstitial fluid. We will revisit
the validity of this assumption of using the Stokes drag law
and study the effect of nonlinear drag in Sec. VI.

If suspensions are sufficiently energetic then the trajecto-
ries of the particles between collisions are only weakly af-
fected by the fluid drag. In addition, if particle collisions are
not too dissipative, then it can be shown that the particles
obtain an approximately Maxwellian distribution and behave
similarly to a kinetic gas �10�.

As in kinetic gas theory, we separate the motion of par-
ticles into mean flow U= �u� and fluctuation u−U where the
angular brackets represent the local average over particles in
the suspension. The variance of the velocity fluctuation gives
the granular temperature,

T = 1
3 ��u − �u�� · �u − �u��� .

Continuum equations that govern such systems have been
developed by a number of authors �16–20�. The general form
of the equations is

D����
Dt

+ �� � · U = 0,

��
DU

Dt
= � · � −

9��

2a2 U ,

3��

2

DT

Dt
= − � · q + �:�U − �vis − �inelas, �1�

where D
Dt = �

�t +U ·� is the material derivative operator and �
is the local volume fraction. To avoid confusion, we note that

FIG. 1. �Color online� Schematic of the system.
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� represents the mass density of the material of which the
particles are composed, whereas the density of the granular
gas is given by ��. The quantities �, q, �vis and �inelas de-
note the stress tensor, the fluctuation energy flux, the rate of
energy dissipation due to the viscous drag and the rate of
energy dissipation due to inelasticity in collisions, respec-
tively. The equations �1� represent the balance of mass, mo-
mentum, and energy, respectively. The dissipation due to vis-
cous drag takes the form

�vis =
�T

a2 �1��� , �2�

and the dissipation due to inelasticity in particle collisions
takes the form

�inelas =
�1 − e2��T3/2

a
�2�e,�� , �3�

where �1 and �2 are dimensionless functions that can be
derived from kinetic theory. Here, and in what follows, we
take the approach of Sangani et al. �16� in assuming that the
inelastic dissipation rate, the particle stress tensor and other
transport coefficients are only weakly affected by the fluid
drag force.

For general flows the constitutive laws that relate the
stress and energy flux to the state of the suspension are rather
complicated, but we will consider steady states in which
there must be no net flow. Therefore, terms involving tem-
poral derivatives and spatial gradients in the horizontal di-
rections vanish and the mean velocity is zero everywhere. In
this case, the fluctuation flux q has no horizontal components
and the component in the vertical direction, qz, can be ex-
pressed as

qz = − ��
dT

dz
+ 	

d�

dz
� , �4�

where � is the thermal conductivity of the fluctuation energy,
and 	 is the mass diffusion coefficient. Equation �4� shows
that two factors contribute to transferring energy: Thermal
conduction and mass diffusion.

Under the assumptions discussed above, �1� has the fol-
lowing form:

dp

dz
= 0, �5�

d

dz
��

dT

dz
+ 	

d�

dz
� = �vis + �inelas, �6�

where p is the kinetic pressure of the particles. Expressions
for the quantities p, �, and 	 are given by kinetic theory

p = �TF��� , �7�

� = �aT1/2�1�e,�� , �8�

	 = �aT3/2	1�e,�� , �9�

where F���, �1�e ,��, and 	1�e ,�� are dimensionless func-
tions. Various studies have been carried out in the literature

to derive the transport coefficients �1���, �2�e ,��, F���,
�1�e ,��, and 	1�e ,�� under different assumptions. We list
some of the expressions for these quantities from the litera-
ture in Appendix A. In the theoretical analysis presented in
this paper, we will keep these functions in their general form.
Only when we plot the numerical results, we will demon-
strate them with the specific functional forms listed in the
Appendix A.

We note that freely cooling granular gases form dense
clusters �21� that have raised doubts about the adequacy of
the equations given above. However, for driven particle sys-
tems the formation of clusters is often heavily reduced by the
driving. In driven systems, hydrodynamic descriptions have
been extremely widely used and good agreement with nu-
merical simulations and experiments has been found
�2,3,5,7,22�. Moreover, for elastic particles that experience
drag, Wylie and Koch �10� showed a hydrodynamic descrip-
tion can give good agreement with simulations.

Equation �5� is a first-order ordinary differential equation
and Eq. �6� is a second-order ordinary differential equation,
therefore we need three conditions to specify the system. The
first condition is that the average volume fraction �̄ in the
system is fixed, which gives

1

L
	

0

L

��z�dz = �̄ . �10�

The remaining two conditions come from the rate of change
of energy due to particle collisions with the walls, which are
given by


qz
z=L = − ��L	
u·ẑ
0

uz
�EL

m
fL�u�du �11�

and


qz
z=0 = ��0	
u·ẑ�0

− uz
�E0

m
f0�u�du . �12�

Here �L ��0� is the local volume fraction at z=L �z=0�, m is
the mass of the particles, ẑ is the unit vector in the z direc-
tion, uz is the velocity component perpendicular to the wall,
and fL �f0� is the velocity distribution at z=L �z=0�. �EL=

−
1−ew

2

2 muz
2 is the energy loss per particle collision with the

fixed wall, where ew is the coefficient of restitution for col-
lisions between particles and walls. �E0= m

2 ���1+ew�w
−ewuz�2−uz

2� is the energy gain per particle collision with the
vibrating wall.

Equation �5� gives that pressure is a constant, i.e.,

p = P , �13�

where P is a constant to be determined later. Then from �7�
and �13�, we have �F���T= P. Using this expression to
eliminate the temperature from the energy equation �6� yields

−
d

dz
�J���

d�

dz
� = S1K1���P−1/2 + �1 − e2�S2K2�e,�� ,

z � �0,L� �14�

with boundary conditions
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J���
d�

dz
= P−3/2a−1�QL at z = L �15�

and

J���
d�

dz
= P−3/2a−1�Q0 at z = 0, �16�

where

J��� =
�1�e,��
F5/2���

dF���
d�

−
	1�e,��
F3/2���

,

S1 =
�

�a3
, K1��� =

�1���
F���

,

S2 =
1

a2 , K2��� =
�2�e,��
F3/2���

,

QL = ��L	
u·ẑ
0

�1 − ew
2�

4
uz

3fL�u�du , �17�

and

Q0 = ��0	
u·ẑ�0

−
uz

2
���1 + ew�w − ewuz�2 − uz

2�f0�u�du .

�18�

In order to evaluate the integrals in �17� and �18�, one
needs to have detailed information about the velocity distri-
butions at the two walls, f0 and fL. At the vibrating wall, the
nature of the boundary condition implies that there will be
significant deviations from a Maxwellian distribution. A de-
tailed study of the distribution requires the solution of the
kinetic equation which is beyond the scope of this study. A
number of previous authors have been faced with a similar
problem and a number of models that couple the energy in-
put from the boundary to the particles in the interior have
been developed. Warr and Huntley �9� proposed a model in
which the distribution was approximated by a Maxwellian.
Later, Kumaran �4� showed that one could indeed use the
Maxwellian distribution to evaluate the integrals if one con-
sidered the asymptotic limit in which the typical velocity of
particles is much smaller than velocity of the vibrating wall.
The approach of using a Maxwellian distribution has also
been used by Eggers �3� who found reasonable agreement
with simulations. A more detailed study has been performed
by Brey et al. �2� who analyzed a model for the distribution
function that is consistent with the vibrating boundary. In this
paper, we will consider both the approach of using a Max-
wellian approximation used by �3,4,9� and the more detailed
approach used by Brey et al. �2�. In the interests of readabil-
ity, we will first present all theoretical results based on Max-
wellian approximation. The corresponding results based on
the approach of Brey et al. �2� are given in Appendix B. We
show that both approaches give the same qualitative results.

Based on the assumptions that fL and f0 are approximately
Maxwellian, �17� and �18� can be written as

QL =
1 − ew

2

2
��L 2P3

���F��L��3 , �19�

and

Q0 =
1 + ew

2
��0��1 + ew�w2 P

2��F��0�
+ eww

P

�F��0�

− �1 − ew� 2P3

���F��0��3� . �20�

Here we have used the fact that TL= P / ��F��L�� and T0
= P / ��F��0��. The steady state of our system is completely
determined by the differential equation �14� with boundary
conditions �15� and �16�, the constraint on volume fraction
�10� and the expressions for QL and Q0 are given by �19� and
�20�.

III. THEORY WHEN INELASTIC EFFECTS
ARE NEGLECTED

Order of magnitude estimates show that the dissipation
due to interstitial fluid effects will greatly exceed the dissi-

pation due to inelasticity if 4�̄�1−e2��aw
9��

�1. In these cases, it
seems natural to neglect the dissipation due to inelasticity
and consider the behavior of elastic-particle systems. How-
ever, we will show that inelastic effects can only be ne-
glected for values of the wall vibration speed below a critical
value. For vibration speeds exceeding the critical value, no
steady state exists and the effects of inelasticity must be in-
cluded even though order of magnitude estimates suggest
they are negligible.

Furthermore, we will determine the conditions under
which boundary forcing can maintain a highly agitated state
in a discrete particle system in which the interstitial fluid
plays a dominant role in the overall dissipation. We use the
system pressure P to measure how agitated the particle sys-
tem is, and determine the relationship between P and the
speed of vibrating boundary w which measures the magni-
tude of external energy input.

For e=1 and ew=1, the differential equation �14� becomes

d

dz
�J���

d�

dz
� = − S1K1���P−1/2. �21�

The constraint on volume fraction is given by �10�. The
boundary conditions �15� and �16� become

J���
d�

dz
= 0 at z = L , �22�

J���
d�

dz
= P−3/2a−1�Q0 at z = 0, �23�

where, cf. �20�,

Q0 = wP
�0

F��0�
�1 + w2�F��0�

�P
� . �24�

Here we have applied the fact that QL=0 when ew=1.
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A. Parametric solution

Our purpose is to determine the pressure P for a given
mean volume fraction �̄ and a vibration speed w. The system
given by �10� and �21�–�24� contains a highly nonlinear
second-order ordinary differential equation. In spite of the
highly nonlinear nature of the problem, we will derive a
closed-form solution in parametric form. More specifically,
we will derive expressions for P, �̄, and w in terms of �0 and
�L.

Multiplying both sides of �21� by J��� d�
dz and integrating

from � to �L, we obtain

d�

dz
= �2S1�1/2P−1/4 1

J����	�

�L

K1����J����d���1/2

.

�25�

Here we have used the boundary condition at z=L and the
fact J��� d�

dz 0. The above equation allows us to determine z
as a function of � by integrating from �0 to ��z�,

z = �2S1�−1/2P1/4	
�0

�

J�����	
��

�L

K1����J����d���−1/2

d��.

At z=L, we have �=�L, and the above equation gives P in
terms of �0 and �L,

P−1/4 = �2S1L2�−1/2	
�0

�L

J�����	
��

�L

K1����J����d���−1/2

d��.

�26�

The constraint on the volume fraction �10� can be written as

�̄ =
1

L
	

�0

�L

�
dz

d�
d� . �27�

Substituting �25� and �26� into �27�, we obtain �̄ as a func-
tion of �0 and �L,

�̄ =

	
�0

�L

��J�����	
��

�L

K1����J����d���−1/2

d��

	
�0

�L

J�����	
��

�L

K1����J����d���−1/2

d��

. �28�

Evaluating �25� at point z=0, and substituting the result into
�23�, we obtain

Q0 = P5/4�2a2S1

�
	

�0

�L

K1����J����d���1/2

. �29�

Substituting �26� into �29�, we obtain

Q0 = �−1/2a�2S1�3L5

�

�	
�0

�L

K1����J����d���1/2

�	
�0

�L

J�����	
��

�L

K1����J����d���−1/2

d���5 .

�30�

Therefore, �26�, �28�, and �30�, provide us with expressions
for P, �̄, and Q0 in terms of parameters �0 and �L.

Now, we relate w to �0 and �L. Equation �24� is a qua-
dratic equation for w which has two roots. The only positive
root is

w =
F��0�Q0/P�0

1/2 + 1/4 + 2�F3/2��0�Q0
2/�P3�0

2�
. �31�

Since P and Q0 are given by �26� and �30� as functions of �0
and �L, it follows that �31� gives us an expression for w in
terms of �0 and �L.

Equations �26� and �30� show that P and Q0 scale as �2L4

�a6

and �3L5

�2a8 , respectively. Equation �31� shows that for fixed
a /L, w scales as �L

�a2 . The dependence on a /L comes from the
term Q0

2 / P3 in the denominator of �31�. Based on these para-
metric forms, we plot the dimensionless pressure P / � �2L4

�a6 � as

9 11 13
0

0.5

1
φ̄ = 0.08

Dimensionless vibration speed

D
im

en
si

on
le

ss
P

re
ss

ur
e

φ̄ = 0.05

φ̄ = 0.02

wmax

e = 1
a/L = 1/63

11 12 13
0

0.5

1

φ̄ = 0.05

Dimensionless vibration speed

D
im

en
si

on
le

ss
P

re
ss

ur
e

φ̄ = 0.08

φ̄ = 0.02

wmax

e = 1
a/L = 1/63

(a) (b)

FIG. 2. The dimensionless pressure P / � �2L4

�a6 � is plotted against the dimensionless wall velocity w / � �L
�a2 � for elastic-particle systems

�e=1�, a /L=1 /63 and various mean volume fractions. There exists a critical value of the wall velocity wmax for which the pressure tends to
infinity. For values of the wall velocity exceeding the critical value, no steady solution exist. �a� Maxwellian approximation near boundaries
and constitutive laws �A1�–�A6�; �b� the Brey et al. �2� model near boundaries and constitutive laws �A7�–�A16�.
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a function of the dimensionless vibration speed w / � �L
�a2 � for

a /L=1 /63 and various values of �̄ �see Fig. 2�a��. In Fig.
2�a�, we present results using the model �19� and �20� for
energy flux through the boundaries that assumes that the ve-
locity distributions near the boundaries are approximately
Maxwellian. In this figure we use the model for the consti-
tutive relations �A1�–�A6� that is valid for 1−e�1 and over
a large range of volume fractions. To show that our results
are qualitatively insensitive to the choice of model we also
present results for alternative models for both the energy flux
through the boundaries and the constitutive relations. In Fig.
2�b� we present results based on the more detailed approach
of modeling the energy flux through the vibrating boundary
by Brey et al. �2� �its derivation is given in Appendix B�. In
this figure we use the model for constitutive relations
�A7�–�A16� that include high-order corrections in e, but ne-
glect the effects of high volume fractions. We will follow the
same approach in presenting the results for these two models
in �a� and �b� of Figs. 4, 5, 7, 8, 10, 12, and 13.

Figure 2 shows that, for each fixed �̄, there is a maximum
wall speed wmax at which the pressure becomes infinitely
large and above which no steady-state solution exists. This is
true for both the Maxwellian approximation and the Brey et
al. approximation for the energy flux at the boundary.

In Fig. 3, we plot the local volume fraction as a function
of the distance from the vibrating boundary. Near the vibrat-
ing boundary, where the energy is input, the particles have
higher temperature than particles that are further away from
the vibrating boundary. Since the system pressure is constant,
the particles near this vibrating boundary must have lower
volume fraction. So the volume fraction increases monotoni-
cally with the distance from the vibrating boundary. As the
pressure increases, the volume fraction becomes more uni-
form and for large values of the pressure, there are only very
small differences in the volume fraction.

Figure 2 shows that there is a critical vibration speed
wmax. For w
wmax, no steady state exists. Physically, this
occurs for the following reason: As w increases, the energy
that each particle obtains from colliding with the vibrating
wall increases. This tends to increase the temperature near

the vibrating wall and so the particles collide more rapidly
with the wall. Both of these effects cause the rate of energy
input to increase dramatically as w increases. As w ap-
proaches wmax, it becomes increasingly difficult for the drag
to dissipate all of the energy that is input. For w
wmax, the
drag can no longer match the rate of energy input and the
energy of system continuously increases. Hence, no steady
state can be obtained for w
wmax.

In the following section, we analyze the behavior of the
system near this critical wall speed wmax.

B. Asymptotic solution near wmax

When the velocity of the vibrating boundary is very close
to wmax, the pressure of the system will be large and the
volume fraction will be approximately uniform �see Fig. 3�.
This also can be seen by taking the limit P→� in �26� which
implies �L→�0. Therefore, �L−� is small for all �
� ��0 ,�L�. We now expand the parametric solution in terms
of this small parameter to obtain the explicit asymptotic be-
havior of P as a function of �̄ and w.

Equation �25� can be written as

d��L − ��
dz

= −
d�

dz

= P−1/4�2S1K1��L�
J��L�

��L − ���1/2

��1 + �3J���L�
4J��L�

−
K1���L�

4K1��L�
���L − ��

+ O���L − ��2�� . �32�

Equation �32� can be solved explicitly and the result is given
by
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FIG. 3. The local volume fraction ��z� is plotted against z /L for elastic-particle systems �e=1� under different pressures. �a� �̄=0.01; �b�
�̄=0.05. The volume fraction profile becomes more uniform as pressure increases. The constitutive model �A1�–�A6� is used for both �a� and
�b�.
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�L − � = P−1/4�S1K1��L�
2J��L� �1/2

�L − z��1 +
1

3
P−1/2�3J���L�

4J��L�

−
K1���L�

4K1��L�
�S1K1��L�

2J��L�
�L − z�2 + O�P−1�� . �33�

This determines � as a function of z and �L,

��z� = �L − P−1/2S1K1��L�
2J��L�

�L − z�2 + O�P−1� . �34�

Based on �34�, the constraint on the volume fraction �10�
becomes

�̄ =
1

L
	

0

L ��L − P−1/2�S1K1��L�
2J��L� ��L − z�2�dz + O�P−1�

= �L − P−1/2�S1K1��L�
2J��L� �L2

3
+ O�P−1� ,

which gives

�L = �̄ + P−1/2�S1K1��L�L2

6J��L� � + O�P−1�

= �̄ + P−1/2S1K1��̄�L2

6J��̄�
+ O�P−1� . �35�

Substituting z=0 and �=�0 into �33� we obtain

�L − �0 = P−1/4�S1K1��L�
2J��L� �1/2

L�1 +
1

3
P−1/2�3J���L�

4J��L�

−
K1���L�

4K1��L�
�S1K1��L�

2J��L�
L2 + O�P−1�� . �36�

Therefore, �0 can easily be determined from �35� and �36�
and the result is

�0 = �L − ��L − �0�

= �L −
S1K1��̄�L2

2J��̄�
P−1/2 + O�P−1�

= �̄ −
S1K1��̄�L2

3J��̄�
P−1/2 + O�P−1� . �37�

We can see from �35� and �37� that both �0 and �L are
indeed close to �̄ when the pressure is large. Therefore, our
assumption that � does not change significantly with z is
indeed valid. Similarly, we expand � near �L and integrate
�29� to obtain

Q0 = P5/42S1�−1/2a�K1��L�J��L���L − �0��1/2�1 − � J���L�
4J��L�

+
K1���L�

4K1��L�
���L − �0� + O���L − �0�2�� . �38�

From �36� and �38�, we get a simple relation between Q0 and
P,

Q0 =
S1aL
�

K1��̄�P =
�L

�a2K1��̄�P . �39�

From �24�, �37�, and �39�, we obtain

P1/2 = �w2�F��̄�/� + �F���̄�

F��̄�
−

1

�̄
�

�
S1K1��̄�L2

3J��̄�
� w

wmax − w
for w � wmax, �40�

where

wmax =
�L

�a2K1��̄�F��̄�/�̄ . �41�

Therefore, a nontrivial steady state can be achieved only
when the wall velocity is below wmax.

In Fig. 4, we compare the asymptotic solution with the
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FIG. 4. The dimensionless pressure P / � �2L4

�a6 � is plotted against the dimensionless wall velocity w / � �L
�a2 � when w is near wmax for

elastic-particle systems �e=1� and various mean volume fractions. The dashed line is the location of dimensionless wmax / � �L
�a2 �. The

asymptotic solution �dots� is in good agreement with the general solution �solid curve� when pressure is large. �a� Maxwellian approximation
near boundaries and constitutive laws �A1�–�A6�; �b� the Brey et al. �2� model near boundaries and constitutive laws �A7�–�A16�.
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general solution for the same parameters used in Fig. 3. The
dots are the asymptotic solution for the dimensionless pres-
sure, the solid curve is the general solution and the dashed
line is the location of the maximum dimensionless vibration
speed wmax / � �L

�a2 �. It shows that the asymptotic solution is in
good agreement with the general solution when the pressure
is large.

IV. THEORETICAL PREDICTIONS FOR INELASTIC-
PARTICLE SYSTEMS

In the preceding section, we have shown that, when in-
elastic effects are neglected and w�wmax, the fluid drag can
dissipate energy sufficiently rapidly to balance the energy
input from the vibrating boundary and give a steady state.
However, when w
wmax, neglecting inelastic effects leads
the system pressure to continuously increase and no steady-
state solution exists. Therefore, we must include the effects
of inelastic collisions when w
wmax.

When the collisions between particles are not elastic, en-
ergy dissipation of the system will be caused not only by
drag, but also inelasticity. We show that the latter will play a
critical role in the energy dissipation when w
wmax. Rela-
tive to the elastic situation, the system will be less energetic
given the same amount of external energy since particles will
lose more energy due to inelastic-particle-particle collisions
and inelastic-particle-boundary collisions. We will show that
systems with inelastic particles behave very differently from
systems with elastic particles. The inelastic-particle system is
determined by Eqs. �10�, �14�–�16�, �19�, and �20�. Follow-
ing the same integration procedure as in Sec. III A, i.e., mul-
tiplying both sides of �14� by J��� d�

dz and performing inte-
gration from � to �L, we get

J���
d�

dz
= 2�I1��,�L,P� + I2��,�L,e� + I3��L,ew��1/2,

�42�

where

I1��,�L,P� = 	
�

�L

P−1/2S1K1����J����d��,

I2��,�L,e� = 	
�

�L

�1 − e2�S2K2�e,���J����d��,

and

I3��L,ew� =
1

2
�1 − ew

2

2�a

�L

F3/2��L��2

.

The quantities I1, I2, and I3 are related to energy loss associ-
ated with viscosity, inelastic collisions between particles, and
inelastic collisions between particles and boundaries, respec-
tively.

For e�1, we cannot determine the solution in a simple
parametric form and we must resort to numerical methods.
The results are shown in Fig. 5 for �̄=0.05. In this case, the
dimensionless critical vibration speed for systems with e=1
is wmax / � �L

�a2 �=13.5. Figure 5 shows that inelastic effects give
rise to the existence of steady states for values of w
wmax.
In Fig. 6 we plot the local volume fraction against the dis-
tance from the vibrating wall. Figure 6 shows that in this
case, ��z� is relatively insensitive to P, but is not uniform in
z. This is in sharp contrast to the case of elastic-particle
systems in which particles distribute almost uniformly for
large P, see Fig. 3. In the case of elastic particles, the drag
plays a decreasingly important role in controlling the dynam-
ics and so the temperature and the local volume fraction
become uniform. However, for inelastic particles the loss of
energy due to collisions plays an important role no matter
how large the pressure. Therefore, as one moves away from
the vibrating boundary, inelastic collisions cause the tem-
perature to decrease. Since the pressure is constant, this
means that the local volume fraction must increase.

We now analyze the asymptotic behavior of pressure in
the inelastic-particle system for large w since we are inter-
ested in what will happen when the vibration speed exceeds
the critical value wmax after the inelastic effects are included.
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FIG. 5. The dimensionless pressure P / � �2L4

�a6 � is plotted against the dimensionless wall velocity w / � �L
�a2 � for �̄=0.05. Inelasticity in the

collisions has a dramatic effect on the steady state of the systems when w
wmax. For e=1, the dimensionless critical vibration speed
wmax / � �L

�a2 �=13.5. �a� Maxwellian approximation near boundaries and constitutive laws �A1�–�A6�; �b� the Brey et al. �2� model near
boundaries and constitutive laws �A7�–�A16�.
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In particular, we will show analytically that for large values
of w the steady-state solution still exists. This is in contrast
to the elastic-particle system. We will also show that P is
proportional to w2.

We note that for an inelastic system, namely e�1 and
ew�1, the term I1 is negligible in comparison with the terms
I2 and I3 for large P. After evaluating �42� at z=0, and sub-
stituting the result into �16�, we obtain

Q0

P3/2 = �2a2

�
�I2��0,�L,e� + I3��L,ew���1/2

. �43�

From �20�, we obtain

Q0

P3/2 =
1 + ew

2

�0

F��0�
��1 + ew��F��0�

2�
r2

+ ewr − �1 − ew� 2

��F��0�
� , �44�

where r= w
P

. Equating �43� and �44� gives us

�2a2

�
�I2��0,�L,e� + I3��L,ew���1/2

=
1 + ew

2

�0

F��0�
��1 + ew��F��0�

2�
r2

+ ewr − �1 − ew� 2

��F��0�
� . �45�

Equation �45� is a quadratic equation in r and we denote the
only positive root as r��0 ,�L�. Therefore,

P =
w2

r2��0,�L�
. �46�

We note that the quantity r��0 ,�L� only depends on �0 and
�L. In general, �0 and �L depend on �̄ and P. However, for
sufficiently large values of w, P will be large and so the
volume fraction profile ��z� will be insensitive to P as can
be seen from large P limit of �42�. That is �0 and �L will
only depend on �̄. In this case, r also only depends on �̄.
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FIG. 6. The local volume fraction ��z� is plotted against z /L for inelastic-particle systems �e=0.9� for various pressures. �a� �̄=0.01; �b�
�̄=0.05. The volume fraction profile is insensitive to changes in pressure when the pressure is large. There is a large variation in the volume
fraction at different z locations. This is in sharp contrast to the elastic-particle systems in which the volume fraction is uniform in z when the
pressure is large. The constitutive model �A1�–�A6� is used for both �a� and �b�.
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FIG. 7. The dimensionless pressure P / � �2L4

�a6 � is plotted against the dimensionless wall velocity w / � �L
�a2 � for inelastic-particle systems

�e=0.9� and various mean volume fractions. The asymptotic solution �dots� approximate the exact solution �solid curve� well. The singularity
in the elastic system with w
wmax is removed once the effects of inelastic collision are included. �a� Maxwellian approximation near
boundaries and constitutive laws �A1�–�A6�; �b� the Brey et al. �2� model near boundaries and constitutive laws �A7�–�A16�.
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In Fig. 7 we plot the dimensionless pressure against the
dimensionless wall velocity and compare the asymptotic
�dots� and numerically obtained solutions �solid curves�. The
agreement is excellent over a range of mean volume frac-
tions. In Fig. 8 we plot P /w2 against w and show that P /w2

indeed tends to a constant for large w. For all values of w, the
steady state exists and the pressure does not tend to infinity
for any finite vibration speed. Therefore, the singularity that
occurs at w=wmax in the elastic case is removed once the
effects of inelastic collisions are included.

Intuitively, one would expect that, as �̄ increases, more
particles collide with the vibrating boundary, then both pres-
sure and energy flux should increase. Figure 9 shows that
this is indeed true for elastic particles. However, Fig. 9 also
shows that the pressure and energy flux are not monotonic
functions of �̄ for e�1. The intuition given above is only
correct for dilute systems in which collisions between par-
ticles are negligible. This is why, in Fig. 9, both the pressure
and the energy flux increase with �̄ when �̄ is small. How-
ever, as �̄ increases further, the inelastic collisions play a
critical role in dissipating energy which leads to lowering the
pressure and energy flux. As �̄ increases further, the particles

become more packed, and the energy dissipation does not
grow as fast as the energy input. Then the pressure becomes
an increasing function of �̄ again. Therefore, the nonmono-
tonic behavior shown in Fig. 9 is due to the interplay be-
tween two effects: An increase in �̄ leads to an increase in
energy input due to collisions with the vibrating boundary,
but also leads to more energy dissipation due to inelastic
collisions.

Figure 5 shows that the behavior in inelastic-particle sys-
tems is dramatically different from that in elastic-particle
systems. To understand such phenomenon, we consider an
extremely simple system in which there is only one particle
in the system. Due to the drag any velocity components in
the horizontal directions will tend to zero and the particles
will eventually move vertically back and forth between the
two walls. Suppose a particle begins from the bottom bound-
ary with vertical velocity V0 and no horizontal velocity. The
particle will move up to the top wall with drag, experience
an inelastic collision with the fixed boundary, bounce back
from it and move to the bottom wall. Then it gets more
energy from the vibrating wall. We will refer to this sequence
as a “cycle.” If collisions are elastic, the loss of energy only
depends on the drag � and the distance L between the two
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FIG. 8. The dimensionless P /w2 is plotted against the dimensionless wall velocity w / � �L
�a2 �. P is proportional to w2 under large pressure.

�a� Maxwellian approximation near boundaries and constitutive laws �A1�–�A6�; �b� the Brey et al. �2� model near boundaries and consti-
tutive laws �A7�–�A16�.
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boundaries. Let Vn be the velocity of the particle after the nth
cycle. After the first cycle, the velocity becomes V1=V0

+2w−2ŵ, where ŵ= 9�L
2�a2 . Hence Vn=Vn−1+2w−2ŵ=V0

+2n�w− ŵ� after the nth cycle. In addition, the velocity V0
must be greater than 2ŵ in order to guarantee that the par-
ticle collides with vibrating boundary after the first cycle,
and the same requirement holds for Vn. It is easy to see that,
in the limit n→�, we have,

V� = �0 if w � ŵ ,

V0 if w = ŵ ,

� if w 
 ŵ .
�

The above expression shows that there exists a finite critical
vibration speed ŵ= 9�L

2�a2 which adds a suitable amount of en-
ergy to the system to compensate exactly for the energy loss
caused by drag. Either lower or higher vibration speeds will
result in the particle stopping or the energy growing without
bound, respectively.

In the single-particle model with an elastic particle, a non-
trivial steady state only exists for a single value of the wall
velocity. In the multiparticle system the nontrivial steady
state exists for a range of wall velocities. The difference is
because particle scattering from interparticle collisions
means that particles do not travel a fixed distance. Interpar-
ticle collisions also give a distribution of particle velocities.

Now we include the effects of inelastic collisions with the
walls in our simple single-particle system. In the single-
particle system, there is no energy loss from particle-particle
collisions, but collisions with boundaries reduce the energy
in the system. The reduction of the velocity during one cycle
due to drag is fixed. Whereas, the reduction of the velocity
during one cycle due to inelasticity is proportional to the
velocity. Therefore, drag alone may not be able to dissipate
the energy gained from the vibrating wall, while the inelas-
ticity can. For elastic particles, this is why the steady state
does not exist for values of the wall velocity above a critical

value. While for inelastic particles, the steady state does exist
no matter how large the wall velocity is.

A simple analysis shows that the initial vertical velocity
V0 must be greater than

1+ew

ew
ŵ in order to complete the first

cycle, and after a large number of cycles the velocity tends to

V� =
w − ewŵ

1 − ew
. �47�

Therefore, as long as w

1
ew

ŵ, a steady-state solution always
exists. Equation �47� can be rewritten as w= ŵ+ �1−ew��V�

− ŵ�. The first term is the same as in the elastic case, and the
second term �1−ew��V− ŵ� represents the additional energy
input needed to compensate for the energy loss due to the
inelastic collisions.

Based on the velocity V� at steady state, one can easily
obtain the change of momentum and the time spent in each
cycle. The ratio of these two quantities gives the effective
force on the walls,

F =�
12��aŵ

ln
V0

V0 − 2ŵ

for ew = 1,w = ŵ and V0 
 2ŵ ,

6��a�w + ŵ�

ln
ew�w − ewŵ�

eww − ŵ

for ew � 1,w 
 ŵ/ew and V0 

1 + ew

ew
ŵ ,

0 for w � ŵ/ew or V0 �
1 + ew

ew
ŵ .

� �48�

It is easy to show that for inelastic-particle systems, the force
given by �48� is asymptotically proportional to w2. This is
exactly the same qualitative behavior that we have analyzed

for inelastic multiparticle systems, see Eq. �46�.
In Fig. 10, we show the dimensionless force F / � �2L

�a � as a
function of dimensionless vibration speed w / � �L

�a2 � at various
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FIG. 10. The dimensionless effective force F / � �2L
�a � is plotted

against the dimensionless wall velocity w / � �L
�a2 � for the single-

particle system. The simple single-particle system indeed captures
the main features of multiparticle systems.
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values of ew for the simple single-particle system. By com-
paring Figs. 5 and 10, one sees that single-particle systems
indeed capture the main features of multiparticle systems.

V. VERIFICATION BY NUMERICAL SIMULATIONS

To verify the theoretical predictions that we have pre-
sented in the Secs. III and IV, we perform direct numerical
simulations in three dimensions. The implementation of the
simulations is straightforward. Between collisions, the par-
ticles move under Newton’s second law. We use an approach
similar to that used by Valiveti and Koch �23� that can be
applied to a wide variety of particle systems with drag. We
therefore use a fixed time step and perform a collision check
after each step. If any collisions occur during the time step,
the algorithm uses Newton’s second law to compute the time
of collision and the velocities and positions of the involved
particles at the time of collision. The particle velocities are
updated with the standard collision rules. The velocities at

the end of the time step are then computed. In addition an
underlying mesh is used to achieve a fast detection of par-
ticle collisions.

We choose the following parameters for the system in our
simulation: a /L=1 /63. In Fig. 11, we show that the system
indeed reaches a steady state and the state is independent of
initial energy in the system as long as the initial energy is
sufficiently large.

Figure 12 shows the relation between dimensionless
P / � �2L4

�a6 � and w / � �L
�a2 � for e=1. The results from simulations

are shown as circles and the theoretical predictions based on
the Maxwellian approximation at the boundaries are shown
as solid curves. The theoretical predictions based on the
more detailed analysis of the boundary conditions given in
�2� are shown as dashed curves. Even though the full simu-
lated system is very complicated, our simple theoretical
model captures all of the essential features. Our theoretical
analysis in Sec. IV demonstrated that it is critical to include
the effects of inelastic collisions when w
wmax. In Fig. 13,
we show the dimensionless pressure as a function of the
dimensionless vibration speed in an inelastic-particle system
with �̄=0.0361 and various values of e. Figure 13 shows that
the steady state indeed exists in the numerical simulations
with inelastic particles. Figure 13 also shows that our theo-
retical predictions for the pressure based on the Maxwellian
approximation �solid curves� and that based on the Brey et
al. �2� approximation �dashed curves� are in qualitatively
good agreement with the results from numerical simulations
�circles�. It shows that the theoretical predictions for the
qualitative behavior of the system are generic, and do not
depend on the details of the approximation for the velocity
distribution near the boundaries.

VI. EFFECTS OF NONLINEAR DRAG

In Sec. III we showed that order of magnitude estimates
can lead one to neglect inelastic effects. When inelastic ef-
fects are neglected, we showed that linear drag can provide
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FIG. 11. �Color online� The dimensionless averaged energy
�energy / � �2L2

�a �� is plotted against dimensionless time �time / �a2

� � for
elastic-particle systems �e=1� with �̄=0.05, w / �L

�a2 =10, and a /L
=1 /63. The averaged energy at steady state does not depend on the
initial state of the system.
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FIG. 12. The dimensionless pressure P / � �2L4

�a6 � is plotted against the dimensionless vibration speed w / � �L
�a2 � for elastic-particle systems

�e=1� and various mean volume fractions. The theoretical predictions �solid curves for the Maxwellian approximation near boundaries and
constitutive laws �A1�–�A6� and dashed curves for the Brey et al. �2� model near boundaries and constitutive laws �A7�–�A16�� behave
qualitatively the same as the results from numerical simulations �circles�. All results showed that no steady state exists above a certain critical
vibration speed.
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sufficient dissipation to give a bounded steady state if the
wall speed is below a critical value wmax. On the other hand,
if the wall speed exceeds a critical value, then the dissipation
from a linear drag cannot match the rate of energy input and
the kinetic energy of the particles grows without bound. For
values of wall speed exceeding the critical value, the inclu-
sion of inelastic effects prevents this unbounded growth in
the kinetic energy even though order of magnitude estimates
suggest that inelastic effects are negligible. In this section,
we show that nonlinear drag effects can play a similar role to
that played by inelastic effects. That is, order of magnitude
estimates can lead one to neglect nonlinear drag effects, but
if one does indeed neglect these effects, then unbounded
growth in the kinetic energy can occur. However, if one does
not neglect the nonlinear drag effects such unbounded
growth can never occur.

An order of magnitude estimate would lead one to neglect
nonlinear drag effects if

Re =
� faw

�
� 1.

In Sec. III we showed that the critical value of the wall
velocity occurs when �a2w

�L =O�10�. For values of the wall
speed near this critical value

Re =
� faw

�
=

� f

�

L

a

�a2w

�L
=

� f

�p

L

a
O�10� .

If we consider metal particles suspended in a gas at normal
atmospheric pressures, we typically have density ratios
� f /�=O�10−4�, so if L /a=O�102�, order of magnitude esti-
mates would indeed lead one to neglect nonlinear drag terms.
However, we know from Sec. III that such an assumption
can lead to unbounded growth in the kinetic energy for
elastic-particle systems. Therefore, we need to include the
effects of inertia. We note that the nonlinear drag terms be-
come more important for dense, highly pressurized gases.

There is an extensive literature relating to the effects of
fluid inertia on flows through fixed beds of particles. This
dates back to the pioneering work of Ergun �24� and has
been further developed by numerous authors �25–31�. How-
ever, the effects of fluid inertia on suspensions has received
much less attention �32,33�. Nevertheless, for Re=O�10� or
less results from numerical simulations �32� show that the
viscous dissipation can be well modeled by the functional
form

�vis =
�T

a2 ��1��� + �3���
� faT1/2

�
� . �49�

Therefore, the total dissipation �vis+�inelast can be written in
the form

�vis + �inelast = �1���
�

a2T + ��1 − e2��2�e,��

+
� f

�
�3�����

a
T3/2. �50�

Hence, the dissipation due to the nonlinear component of the
drag and the dissipation due to inelasticity have the same T3/2

scaling behavior. In fact, the system with nonlinear drag and
inelasticity is identical to the system with linear drag and an
effective coefficient of restitution ê�e ,�� that is given by
solving

�1 − ê2��2�ê,�� = �1 − e2��2�e,�� −
� f

�
�3��� . �51�

Alternatively, the system with nonlinear drag and inelasticity
is also identical to the system with elastic particles, but with
an effective dissipation from the nonlinear component of the

drag �̂3 given by

�̂3�e,�� = �3��� + �1 − e2�
�

� f
�2�e,�� . �52�

We note that this equivalence between inelastic collisions
and nonlinear drag has been discussed in a previous study
�32�.

In what follows, we determine the relation between the
pressure P and the wall velocity w for inelastic-particle sys-
tems with nonlinear drag using the Maxwellian approxima-
tion for the energy input at the walls. After substituting the
relation �F���T= P into �6� with �vis given by �49�, we have

−
d

dz
�J���

d�

dz
� = P−1/2S1K1��� + �1 − e2�S2K2�e,��

+ S3K3���, z � �0,L� , �53�

where S1, S2, K1���, and K2�e ,�� are given by �17�,

S3��� =
� f

�a2 �54�

and
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ous values of e. The theoretical predictions �solid curves for the
Maxwellian approximation near boundaries and constitutive laws
�A1�–�A6� and dashed curves for the Brey et al. �2� model near
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the same as the results from numerical simulations �circles�.
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K3��� =
�3���

F3/2���
. �55�

The inelastic-particle system with nonlinear drag is deter-
mined by Eqs. �10� and �53� with the boundary conditions
�15�, �16�, �19�, and �20�. Multiplying both sides of �53� by
J��� d�

dz and performing integration from � to �L, we get

J���
d�

dz
= 2�I1��,�L,P� + I2��,�L,e� + I3��L,ew�

+ I4��,�L��1/2, �56�

where I1�� ,�L , P�, I2�� ,�L ,e�, and I3��L ,ew� are defined in
�42�, and

I4��,�L� = 	
�

�L

S3K3����J����d��. �57�

The quantities I1 and I4 are related to energy loss associated
with linear and nonlinear drag, respectively. Whereas, the
quantities I2 and I3 are related to energy loss associated with
inelastic collisions between particles, and inelastic collisions
between particles and boundaries, respectively. After evalu-
ating �56� at z=0, and substituting the result and the expres-
sion for Q0 given by �20� into �16�, we obtain

�2a2

�
�I1��0,�L� + I2��0,�L,e� + I3��L,ew� + I4��0,�L���1/2

=
1 + ew

2

�0

F��0�
��1 + ew��F��0�

2�

w2

P
+ ew

w

P1/2

− �1 − ew� 2

��F��0�
� . �58�

For given e, ew, �0, and �L, this equation determines P as a
function of w. We now determine the asymptotic behavior of
P when w is large. Since I1 is proportional to P−1/2 while I2,
I3, and I4 are independent of P, I1 is negligible in comparison
to I2, I3, and I4 for large P. In this case, the inelastic colli-
sions and nonlinear drag give the same order of magnitude
contribution in the energy dissipation and the asymptotic be-
havior of P is given by

P =
w2

s2��0,�L�
, �59�

where s��0 ,�L� is the solution for the following equation:

�2a2

�
�I2��0,�L,e� + I3��L,ew� + I4��0,�L���1/2

=
1 + ew

2

�0

F��0�
��1 + ew��F��0�

2�
s2

+ ews − �1 − ew� 2

��F��0�
� . �60�

Therefore, we have shown that both inelastic collisions and
nonlinear drag can provide sufficient energy dissipation to
form a steady state even for large value for w.

VII. CONCLUSIONS

In this paper, we have conducted a detailed study of the
steady states of particle systems driven by a vibrating bound-
ary. There are two factors contributing to the energy dissipa-
tion: The drag from interstitial fluid and inelastic collisions
between particles. For systems with linear drag, our theoret-
ical analysis showed that neglecting the effects of inelasticity
in collisions is only possible when the vibration speed of the
boundary is below a critical value. Above this critical speed,
energy dissipation due to linear drag alone is not enough to
dissipate the energy gained from the vibrating boundary. In
this case, the pressure in the system continuously increases
and no steady state exists. Therefore, one must include the
effects of inelastic collisions and/or the effects of nonlinear
drag if the wall speed exceeds the critical value. We showed
that a steady state always exists in inelastic-particle systems
and the pressure is asymptotically proportional to the square
of vibration speed of the boundary. We have confirmed our
theoretical predictions by numerical simulations, and the re-
sults from numerical simulations are in qualitatively good
agreement with our theoretical predictions. We have also
showed that nonlinear drag effects in the dissipation can play
a similar role as inelasticity in preventing the kinetic energy
growing without bound.
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APPENDIX A: CONTINUUM MODELS

Continuum models that relate the energy flux, dissipation,
and pressure to the state of the system have been derived by
a number of authors, under different assumptions. These dif-
ferent models give slightly different functional forms for the
quantities �1, �2, F, �1, and 	1 in Eqs. �2�, �3�, and �7�–�9�.
In this paper we will illustrate our results by using the same
two constitutive models used by Martin et al. �7�.

Various authors have assumed that 1−e�1 and derived
expressions that account for the effects of high packing frac-
tions. Jenkins �20� gave expressions for �1 and 	1 used in the
energy flux,

�1�e,�� =
8

�1/2�2��1 +
9�

32
�1 +

5

12��
�2� �A1�

and

	1�e,�� = 0, �A2�

where

� =
1 − �/2
�1 − ��3 . �A3�

This should be supplemented by an expression for F used in
the kinetic pressure given by Carnahan and Starling �34�,
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F��� = ��1 + 4��� . �A4�

The expression for �1 used in the viscous dissipation has
been derived by Sangani et al. �16�,

�1��� =
27�

2
Rdiss, �A5�

where Rdiss is a factor that accounts for increased dissipation
that occurs due to the pressure of neighbors. An approximate
expression that fits the result of numerical simulations was
given in Sangani et al. �16�. In this paper we neglect this
effect and set Rdiss=1, although this does not qualitatively
affect all figures presented in our numerical demonstration.
The expression for �2 used in the inelastic dissipation is
given by Jenkins and Savage �19�,

�2�e,�� =
6�2�

�
. �A6�

Brey et al. �17,18� derived expressions that neglect the
effects of high packing fractions, but include high-order cor-
rections in e. In this low volume fraction limit, the relevant
expressions are

�1��� = 27
2 � , �A7�

�2�e,�� =
6�F���

�
�1 +

3

32
c�e�� , �A8�

�1�e,�� = �*�e�
25�

64
, �A9�

	1�e,�� = 	*�e�
25�

64�
, �A10�

and

F��� = ��1 + 4��� , �A11�

where

�*�e� = 2
3 �1 + c�e�����e� − 2��e��−1, �A12�

	*�e� = 2��e���*�e� +
c�e�

3��e���2��e� − 3��e��−1,

�A13�

c�e� =
32�1 − e��1 − 2e2�

81 − 17e + 30e2�1 − e�
, �A14�

��e� = 5
12�1 − e2��1 + 3

32c�e�� , �A15�

and

��e� =
1

3
�1 + e��1 +

33�1 − e�
16

+
�19 − 3e�c�e�

1024
� .

�A16�

These constitutive laws given by Brey et al. �17,18� keep
only the leading order contributions in � and so one is natu-

rally led to take the leading order expression for F, namely
F���=�. When using the Maxwellian approximation near
the boundaries, this represents no problem, but when using
the Brey et al. �2� model for the boundary flux one obtains an
expression for the asymptotic behavior of P near wmax �B10�
that cancels if the leading order expression is used. There-
fore, it is consistent to keep the higher-order terms for F in
�A11�, while discarding the higher-order terms for the other
quantities. That is, in the �→0 limit, the contributions from
the higher-order terms associated with quantities other than
F��� vanish, but the higher-order terms associated with F���
are nonvanishing. This choice of constitutive law is similar
to that used by Martin et al. �7�.

We note that the expressions of Brey et al. �18� have been
extended to higher densities by Garzo and Dufty �35� using
revised Enskog theory.

APPENDIX B: THEORETICAL PREDICTIONS BASED
ON A DETAILED ANALYSIS OF DISTRIBUTION

AT BOUNDARIES

A number of authors including Warr et al., Kumaran, Mc-
Namara, and Barrat, and McNamara and Luding have con-
sidered the problem of how to deal with the boundary con-
ditions �17� and �18�. The most detailed and complete study
was performed by Brey et al. �2� who showed that the addi-
tion of energy causes significant deviations from the Max-
wellian distribution for the vertical component of velocity in
the vicinity of the wall. They recognized that a complete
theoretical description of the distribution function could only
be carried out in the context of the kinetic equation. Rather
than dealing with the complexities of the kinetic equation,
they proposed a simple and physically appealing model and
found good agreement with Monte Carlo simulations. In this
section, we will follow a similar approach to that given by
Brey et al. and show that this approach gives results that
have the same qualitative behavior as the ones based on the
Maxwellian approach shown in Secs. II–IV. Following �2�,
we assume that the distribution function f0 can be factorized
as f0�u�= fxy�ux ,uy�fz�uz�, where ux, uy, and uz denote the
components of velocity in the horizontal directions x, y and
the vertical direction z, respectively. Here, fxy and fz are the
probability density functions for the velocity in the horizon-
tal directions and the vertical direction, respectively. There-
fore, the energy flux at the vibrating boundary becomes

Q0 = ��0	
u·ẑ�0

−
uz

2
���1 + ew�w − ewuz�2 − uz

2�f0�u�du

= ��0	
uz�0

−
uz

2
���1 + ew�w − ewuz�2 − uz

2�fz�uz�duz,

�B1�

since �ux
�uy

fxy�ux ,uy�duydux=1. Therefore, only fz�uz� for
uz�0 matters in the evaluation of �B1�. Any distribution fz
can be expressed as

fz�uz� = f−�uz�Iuz�0 + f+�uz�Iuz
0.

Due to the motion of the wall and inelastic-particle collisions
with the wall, f+ is related to f− by the following relation:
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uzf
−�uz�Iuz�0duz = ��1 + ew�w − ewuz�f+��1 + ew�w

− ewuz�Iuz�0d��1 + ew�w − ewuz� ,

which leads to

f+�u�du = −
�1 + ew�w − u

ew
2 u

f−� �1 + ew�w − u

ew
�du

for u 
 �1 + ew�w .

Hence fz becomes

fz�u� = f−�u�Iu�0

−
�1 + ew�w − u

ew
2 u

f−� �1 + ew�w − u

ew
�Iu
�1+ew�w.

�B2�

Substituting �B2� into �B1�, we obtain

Q0 =
1 + ew

2
��0��1 + ew�w2f1 + 2ewwf2 − �1 − ew�f3� ,

�B3�

where f i=�−�
0 �−u�i f−�u�du for i=1,2 , . . .. Following Brey et

al. �2�, we match the energy of the particles at the boundary
with the energy in the interior and assume that the horizontal
components of the velocity are not significantly affected by
the wall. This gives,

T0 = �1 + ew��wf1 + f2� . �B4�

Using �F��0�T0= P to eliminate the temperature from �B4�,
we obtain

P = �F��0��1 + ew��wf1 + f2� . �B5�

Equations �B3� and �B5� give us a relation between Q0 and
P,

Q0 = P
�0

F��0��1 + ew

2
w −

1 − ew

2

wf2 + f3

wf1 + f2
� . �B6�

A similar approach can be used at the fixed boundary. By
setting w=0, we get the energy flux at the fixed boundary,
z=L,

QL = P
�L

F��L�
1 − ew

2

f 3̃

f 2̃

, �B7�

where f ĩ=�0
�uif +̃�u�du and f +̃ is the distribution for uz
0 at

z=L.
For elastic-particle systems, i.e., e=ew=1, we obtain

w =
Q0

P

F��0�
�0

, �B8�

and QL=0.
We comment that in Brey et al. �2�, a specific functional

form

f−�u� = c1e−�u/k�2
�B9�

is used, and they only considered the case of ew=1. Here we
have showed that the approach of Brey et al. gives a simple

relation �B8� for all functional forms of f− when ew=1. In
other words, �B8� is independent of the functional form of f−

when ew=1.
Based on the approach of Brey et al. �2�, the elastic-

particle system is governed by the same set of equations for
the approach based on the Maxwellian approximation except
that �24� is replaced by �B8�, namely, it is governed by �10�,
�21�–�23�, and �B8�. Following the same procedure shown in
Sec. III, the parametric solutions for P, �̄, and Q0, in terms
of �0 and �L, are given by �26�, �28�, and �30�, respectively.
The wall velocity, w is related to �0 and �L by �B8�.

The numerical results of this approach have been pre-
sented in Sec. III along with the approach based on the Max-
wellian approximation near the boundaries. Both approaches
have the same qualitative behavior. In particular, both ap-
proaches show that there exists a critical vibration speed
above which no steady state exists in elastic-particle systems.

Following the same procedure given in Sec. III, the ap-
proach of Brey et al. gives the following expressions for the
asymptotic behavior of P near wmax:

P1/2 = �F���̄�

F��̄�
−

1

�̄
��S1K1��̄�L2

3J��̄�
� w

wmax − w
, �B10�

where

wmax =
�L

�a2K1��̄�F��̄�/�̄ . �B11�

This expression for wmax given by �B11� is the same as �41�
derived from the approach of Maxwellian approximation.

Based on the model of Brey et al. �2�, the inelastic-
particle systems, e�1 and ew�1, are determined by �10�,
�14�–�16�, and �B5�–�B7� and the functional form �B9� pro-
posed in Ref. �2�. From �10�, �14�–�16�, �B7�, and �B9�, we
have the following asymptotic expressions for Q0 / P3/2 in
terms of �0 and �L when w is large:

Q0

P3/2 = �2a2

�
�I2��0,�L,e� + I3̃��L,ew���1/2

, �B12�

where

I3̃��L,ew� = I3��L,ew�
�3b3

2

4ew�1 + ew�2b2
3 ,

and bn=�0
�xne−x2

dx for n=1,2. . .. From �B5� and �B6�, we
have

Q0

P3/2

=
�0

4�1 + ew��F3��0�
�1 + ew�w2f1 + 2ewwf2 − �1 − ew�f3

�wf1 + f2�3/2

=
�0��1 + ew�r2b1 + 2ewrb2 − �1 − ew�b3�

4�1 + ew��F3��0��rb1 + b2�3/2

��	
−�

0

e−x2�1 −
x

�1 + ew�r − ewx
�dx�1/2

, �B13�

where r= w
k . Equating �B12� and �B13� gives us
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�2a2

�
�I2��0,�L,e� + Ĩ3��L,ew���1/2

=
�0��1 + ew�r2b1 + 2ewrb2 − �1 − ew�b3�

4�1 + ew��F3��0��rb1 + b2�3/2

��	
−�

0

e−x2�1 −
x

�1 + ew�r − ewx
�dx�1/2

. �B14�

Solving �B14� gives us an expression of r in terms of �0 and
�L, which we denote as r��0 ,�L�. Substituting this value
into �B5�, we obtain

P = C2��0,�L�w2, �B15�

where

C2��0,�L�

=
�F��0��1 + ew�

r2��0,�L�
�r��0,�L�b1 + b2�

��	
−�

0

e−x2�1 −
x

�1 + ew�r��0,�L� − ewx
�dx�−1

.

Equation �B15� shows P is asymptotically proportional to
w2. This behavior is the same as �46� obtained from the
approach based on the Maxwellian approximation.
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